טכנולוגיית ה-MRI היא טכנולוגיה שאין צורך להציג אותה. היא קיימת כבר מעל ל-50 שנה וזוכה למחקר מתקדם ולשבחים מרובים. מאידך בשנים האחרונות צמחה לה טכנולוגיה אחרת לדימות, אולי פחות ידועה, בשם MPI, אשר כוללת כבר סורקים מסחריים שיצאו לשוק (כפי שמופיע בתמונה).

טכנולוגיית ה-MPI היא ראשי תיבות של Magnetic particle imaging, דימות בעזרת חלקיקים. מדובר בטכניקה טומוגרפית (משמע מציגה חתכים כמו ב-CT ו-MRI) לא פולשנית, של חלקיקי תחמוצת הברזל (SPIO- Superparamagnetic Iron Oxide) אשר מוכנסים לגוף כאשר הם משולבים בתוך נתבים (SPIONs- Superparamagnetic Iron Oxide Nanoparticles). קוטרם בין 1 ל-100 ננומטר.

חלקיקי תחמוצת הברזל נחקרו רבות בשנים האחרונות, בגלל התכונות העל-פרמגנטיות שלהם (על-פרמגנטיות,  Superparamagnetic, היא תופעה שבה החלקיקים המגנטיים מתנהגים כמו מגנטים רק כאשר מופעל עליהם שדה מגנטי חיצוני, וכשהשדה המגנטי מוסר, הם מאבדים את המגנטיות שלהם). חלקיקים אלו מוזרקים לגוף כאשר הם מצופים בחומר אחר (כמו דקסטרן, קרבוקסידקסטרן או פוליאתילן גליקול) על מנת לשפר את היציבות שלהם ולהתאים אותם לסביבה הביולוגית. טכניקת הדימות MPI מאתרת את אותם חלקיקים ואת תנועתם בתוך הגוף. מכיוון שהגוף לא מכיל SPIONs באופן טבעי, האות המתקבל הוא ללא רעש רקע, מה שמאפשר יצירת תמונות ברורות ומדויקות. לאחר מכן חלקיקים אלו מתפרקים בגוף בצורה טבעית.

את ה-MPI יצרו לראשונה בשנת 2001 מדענים גרמניים, העובדים במעבדת המחקר המלכותית של פיליפס בהמבורג. המערכת הראשונה הוקמה בשנת 2005. מאז הטכנולוגיה קודמה על ידי חוקרים אקדמיים במספר אוניברסיטאות ברחבי העולם ולאחרונה סורקי ה-MPI המסחריים הראשונים של חברת Magnetic Insight ושל חברת Bruker Biospin הפכו לזמינים.

למרות הדימיון המסוים בשם, ה-MPI וה-MRI שונים לגמרי בחומרה שלהם. אם ב-MRI אנחנו זקוקים לשדה מגנטי חיצוני לשם קבלת סיגנל, ב-MPI השדה המגנטי של איזור הדגימה הינו אפס או כמעט אפס. אנחנו בעצם יוצרים איזור ללא שדה מגנטי ואז משתמשים בשדה מגנטי משתנה. בעקבות כך חלקיקי SPIO יכולים להתמגנט בקלות, אין לנו שום הפרעות מרקע אחר מאחר, כפי שכבר הוזכר, ברקמות הגוף אין חלקיקי SPIO באופן טבעי, וכך התמונות יוצאות ברזולוציה גבוהה מאוד. MPI  לא אמורה להחליף את סריקות ה-MRI וה-CT אלא להוות בדיקה משלימה לגביהן.

פוטנציאל היישומים של ה-MPI לא מועט- מהדמיית לב בזמן אמת, דרך דימות גידולים מוצקים ומיקרו-גרורות, ועד יכולת לעקוב אחרי תא יחיד בכל הגוף. יישום מרתק אחר הוא דימות פונקציונלי של המוח בעזרת MPI. יכולת הרגישות הגבוהה (רזולוציה של פחות מ-0.4 מ”מ), יכולת הרזולוציה הטמפורלית המצוינת (20 אלפיות השנייה) וניגודיות גבוהה (כיוון שאין רעשי רקע) ביחס לטכניקות דימות פונקציונליות אחרות, מבטיחות שילוב רפואי של MPI ואף יכולת לחקור נוירו-אקטיבציה תפקודית ברמה של מטופל יחיד.

 

אתר הבית של International Workshop on Magnetic Particle Imaging

מאמר מסכם על MPI- NCBI (National Center for Biotechnology Information)

 

כותב הכתבה: עופר בן חורין, בעל ניסיון של כ-20 שנה באפליקציות, מחקרי תרופות והדרכה בתחום ה-MRI. איש צוות בפקולטה לביו-רפואה בטכניון, חיפה.
מחבר הספר “MRI המדריך המלא- רפואה ופיזיקה נפגשות” באתר www.mriguide.co.il

 

עולם הרפואה והטכנולוגיה הוא עולם שמתקדם כל הזמן. ניתן לשרטט מעיין קו רציף לגבי כל המצאה, כך שאין באמת רגע אחד של המצאה אלא רצף. אפשר להדגים תכונה זו של המדע בצורה מצויינת על סורק ה-MRI. הוא התחיל בגילוי תופעת התהודה, דרך יצירת מכשיר ה-NMR, התפתחות סורק ה-CT שיצרה מודל חישובי שימושי, ועד יצירת סורק ה-MRI עצמו. גם כאן לא הסתיימה הדרך. עשרות מחקרים נעשים בתחומים שונים- פיזיקה, מחשוב, בינה מלאכותית ועוד- לשם יצירת סורקי MRI חזקים יותר וזולים יותר (את הקו ההיסטורי ניתן לראות בפרק ההיסטוריה בספר “MRI המדריך המלא-רפואה ופיזיקה נפגשות” ואילו את כיווני המחקר העתידניים ניתן לקרוא באותו הספר בפרק “מה צופן העתיד?”).

סריקת ה-MRI ידועה כבדיקה מצויינת לרקמות הרכות של הגוף, מאידך סורקי MRI ידועים כסורקים גדולים ויקרים מאוד, הדורשים תשתית מיוחדת ולכן זמינותם נמוכה (בישראל, נכון לשנת 2024- יש רק כחמישה מכשירים בלבד למיליון נפש). לאחרונה חוקרים מהונג קונג, בראשותו של פרופ’ אד וו (Ed X. Wu) הציגו אבטיפוס של מכשיר MRI מסוג חדש, שפועל בשדה מגנטי נמוך מאוד (מה שנקרא ULF- Ultra-Low Field). סורקים אלו יהיו זולים וניידים וניתן יהיה להפעילם ללא צורך בתשתית ייעודית של קירור בהליום, ואת אספקת החשמל הם יוכלו לקבל משקע חשמלי רגיל.

לא מדובר ברעיון חדש, אלא- כפי שדובר מעלה, בקו רציף, משמע בתהליך שבו החוקרים הצליחו לשפר את בעיית חוסר ההומוגניות של המגנט הראשי (בעיה שנגרמת בגלל עוצמה חלשה של המגנט)- מה שגרם לאיכות תמונה ירודה בניסיונות קודמים. שיפור המגנט, סלילים קולטים טובים יותר ובינה מלאכותית הצליחו להתגבר על הבעיה הזו בהדרגתיות. בשנת 2020 יצא ה-MRI המסחרי הראשון בשדה אולטרא נמוך- אלא שהוא היה מסוגל לבצע רק בדיקות מוח. החידוש הפעם הוא אבטיפוס שמסוגל לבצע את רוב סוגי סריקות ה-MRI באיכות טובה, כאשר השדה המגנטי שלו הוא בסה”כ 0.05 טסלה ולכן הוא צורך מעט חשמל ויכול להתחבר לשקע רגיל ולא לשקע תלת-פאזי. בשל כך, הוא גם עולה כעשירית מסורק MRI ממוצע (נניח של 1.5 טסלה).

פיתוח זה יכול להכשיר בעתיד את מערך סורקי ה-MRI לסורקי MRI שאינם זקוקים לקירור בהליום ואינם זקוקים לחשמל במתח גבוה- אלמנטים שמשפרים את נגישות הסורקים, מוזילים את מחירם ומאפשרים לשים סורקי MRI בכל מרכז רפואי ואף לנייד אותם לשדה הקרב. יתרון נוסף הוא עצם השדה המגנטי הנמוך יותר, מה שיאפשר לשקול ביצוע בדיקות לאנשים עם מתכות בתוכם (כדוגמת רסיסים) באופן בטוח יותר. חשוב לציין שנדרשת עוד עבודה רבה על מנת לשפר את זמן הסריקות הארוך של האבטיפוס ואיכות התמונות. כמו כן ישנה התבססות גדולה מאוד על בינה מלאכותית על מנת להגיע לתמונה אבחונית – לכן גם יעד החוקרים אינו להחליף את הסורקים הגדולים הקיימים אלא לספק בעתיד מענה מהיר יותר ונגיש יותר, גם אם באיכות נמוכה יותר, של סריקות MRI.

 

קישור למאמר בכתב העת science

איך עובד ה-MRI?- אתר MRI המדריך המלא